The signature operator at 2 Jonathan
نویسندگان
چکیده
It is well known that the signature operator on a manifold defines a K-homology class which is an orientation after inverting 2. Here we address the following puzzle: what is this class localized at 2, and what special properties does it have? Our answers include the following: • the K-homology class ∆M of the signature operator is a bordism invariant; • the reduction mod 8 of the K-homology class of the signature operator is an oriented homotopy invariant; • the reduction mod 16 of the K-homology class of the signature operator is not an oriented homotopy invariant.
منابع مشابه
The G-Signature Theorem Revisited
In a strengthening of the G-Signature Theorem of Atiyah and Singer, we compute, at least in principle (modulo certain torsion of exponent dividing a power of the order of G), the class in equivariant K-homology of the signature operator on a G-manifold, localized at a prime idea of R(G), in terms of the classes in non-equivariant K-homology of the signature operators on fixed sets. The main inn...
متن کاملThe G - Signature Theorem Revisited 3
In a strengthening of the G-Signature Theorem of Atiyah and Singer, we compute, at least in principle (modulo certain torsion of exponent dividing a power of the order of G), the class in equivariant K-homology of the signature operator on a G-manifold, localized at a prime idea of R(G), in terms of the classes in non-equivariant K-homology of the signature operators on xed sets. The main innov...
متن کاملSignature quantization.
We associate to the action of a compact Lie group G on a line bundle over a compact oriented even-dimensional manifold a virtual representation of G using a twisted version of the signature operator. We obtain analogues of various theorems in the more standard theory of geometric quantization.
متن کاملThe Hodge Dual Operator
The Hodge dual operator ∗ is one of the 3 basic operations on differential forms. (The other 2 are wedge product ∧ and exterior differentiation d.) However most treatments consider only positive-definite inner products, and there are at least 2 standard ways of generalizing this to inner products of arbitrary signature. We outline here a construction of the Hodge dual operator which works for a...
متن کاملfür Mathematik in den Naturwissenschaften Leipzig Examples of signature ( 2 , 2 ) manifolds with commuting curvature operators
We exhibit Walker manifolds of signature (2, 2) with various commutativity properties for the Ricci operator, the skew-symmetric curvature operator, and the Jacobi operator. If the Walker metric is a Riemannian extension of an underlying affine structure A, these properties are related to the Ricci tensor of A.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005